Abstract

<div class="section abstract"><div class="htmlview paragraph">Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles. These components, in conjunction with a set of defined metrics based on our prior work on Operational Safety Assessment (OSA) by the Institute of Automated Mobility (IAM), allow us to conduct a detailed analysis of driving safety. Our results reveal the distribution of these metrics under various real-world car-following scenarios and characterize the impact of different parameters and thresholds in the metrics. By enabling a data-driven approach to address driving safety in car-following scenarios, our work can empower traffic operators and policymakers to make informed decisions and contribute to a safer, more efficient future for road transportation systems.</div></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.