Abstract

BackgroundImplementation Action 5 of the EU Biodiversity Strategy to 2020 includes that Member States map and assess the state of ecosystems and their services in their national territory. A fundamental component of the respective methodology developed in Germany is the classification of semi-natural ecosystems. In this context, this study aims to examine the quality and re-usability of the map of current semi-natural ecosystem types (cEsT) in Germany (1: 500,000; Jenssen et al. in Forschungsvorhaben 3710 83 214, UBA-FB 001834. UBA-Texte 87/2013. Dessau, Textband + 9 Anhänge, 381 S, 2013; Schröder et al. in Sci Total Environ 521–522:108–122, 2015, in Abschlussbericht Forschungsvorhaben UFOPLAN 3713 83 254 im Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Bd. 1:1–493 + 7 Anhänge, Bd. 2:1–343, Bd. 3:1–303. Dessau, 2018]) as well as the cEsT map of the Kellerwald National Park (1: 25,000).ResultsBased on DIN EN ISO 19113 and (DDGI in Qualitätsmodell für die Beschreibung von Geodaten (PAS 1071:2007-10), Beuth Verlag, Berlin, 14 S. + Anh, 2007), the positional accuracy (absolute positional accuracy) and thematic accuracy (classification correctness) were quantitatively determined. For this purpose, a comparison was made with geometrical data of well-known positional accuracy such as ATKIS-DLM (Hesse), mapping of biotopes and habitat types (Hesse, Germany), current vegetation surveys from the Kellerwald National Park (Hesse; permanent random sample inspection, own survey) as well as vegetation surveys available Germany-wide after 1990 from the database of the Institute of Forestry Eberswalde (Waldkunde-Institut Eberswalde; W.I.E.). The map of cEsT Germany has an absolute positional accuracy of ± 42.29 m (≈ ± 42 m) and has been classified correctly by about 30%. Another approximately 35% are ecologically similar to the existing forest ecosystem types (together 65%). In a further approximately 15%, the ecosystem types were correctly classified, but only occur as accompanying ecosystem types. About 15% occurred as an ecologically related accompanying ecosystem type (together 30%). 5% of the spatial objects were mapped incorrectly. In the Kellerwald National Park (1: 25,000), about 22% of the cEsT were classified correctly. Misclassifications on both scale levels concerned the assignments to the elevation levels (e.g., Eb-5n-C2 instead of D1-5n-C2) and, respectively, to the humus species (e.g., Eb-5n-D1 instead of Eb-5n-D1a). The main reason for misclassifications can be seen in high thematic differentiation of the ecosystem classification according to Jenssen et al. (2013). The biotope and habitat mappings are, due to their generally lower thematic differentiation, more appropriate for a falsification than for a verification of the cEsT approach. However, the spatial information content is valuable for comparisons with regard to the occurrence of cEsT as the main or concomitant ecosystem type.ConclusionsThe correctness of the classification can best be verified by vegetation samplings, but only at the site level. Any deviations found could then be used to improve the quality of the cEsT mapping, particularly at the regional level (1:5000 to 1:25,000). In principle, the use of the identification key for forest and forest ecosystem types (Schröder et al. 2018, vol. 3) is recommended for mapping on a regional scale.

Highlights

  • Implementation Action 5 of the European Union (EU) Biodiversity Strategy to 2020 includes that Member States map and assess the state of ecosystems and their services in their national territory

  • A fundamental component of the methodology is the classification of Germany’s semi-natural ecosystems. Their concordance with other ecosystem classifications for which no spatial concretisation has been carried out nationwide (EUNIS, Rieken et al [18]; habitat types according to Annex I of the Habitats Directive) has been achieved

  • The evaluation of the accuracy of the classification was based on the assignments of current semi-natural ecosystem types (cEsT) to the types of potential natural vegetation (PNV) documented in Table 5, the biotope types according to the Hessian Biotope Mapping (HB) and the habitat types according to Annex I of the Habitats Directive

Read more

Summary

Introduction

Implementation Action 5 of the EU Biodiversity Strategy to 2020 includes that Member States map and assess the state of ecosystems and their services in their national territory. A fundamental component of the respective methodology developed in Germany is the classification of semi-natural ecosystems. In this context, this study aims to examine the quality and re-usability of the map of current semi-natural ecosystem types (cEsT) in Germany Action 5 of the EU Biodiversity Strategy to 2020 foresees that Member States will map and assess the state of ecosystems and their services in their national territory. The reference condition was quantitatively described as a type-specific condition of ecosystems, the characteristics of which are characterized by intervals of historical condition variables (1961–1990) that are less affected by substance inputs and climate change than those of subsequent periods

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call