Abstract

Accurately phenotyping numerous test subjects is essential for most experimental research. Collecting such data can be tedious or time-consuming, and it can be biased or limited using manual observations. The thermal tolerance of small ectotherms is a good example of this type of phenotypic data, and it is widely used to investigate thermal adaptation, acclimation capacity and climate change resilience of small ectotherms. Here, we present the results of automatically generated thermal tolerance data using motion-tracking software on video recordings. The automatization was applied to two different heat tolerance assays, in two Drosophila species and used temperature acclimation to create variation in thermal tolerances. We find similar effect sizes of acclimation and hardening responses between manual and automated approaches, but different absolute tolerance estimates. This discrepancy likely reflects both technical differences in the assay conditions as well as the measured end-points of the assays. We conclude that both methods generate biological meaningful results, which reflect different aspects of the thermal biology, find no evidence of inflated variance in the manually scored assays, but find that automation can increase throughput several times without compromising quality. Further we show that the method can be applied to a wide range of arthropod taxa. We suggest that this automated method is a useful example of high throughput phenotyping. Further, we suggest this approach might be applied to other tedious laboratory traits, such as desiccation or starvation tolerance, with similar benefits to throughput but caution that the interpretation and potential comparison to results using different methodology rely on thorough validation of the assay and the involved biological mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call