Abstract

This paper presents results from a numerical and experimental investigation motivated by the need to explore the effectiveness of residual stress relief techniques in aluminium alloy engineering components of complex geometry. Quenching is part of the heat treatment to establish mechanical properties. It can create high levels of residual stress in an engineering component. Finite element analysis (FEA) was used to predict the residual stresses generated by quenching and the location of peak residual stresses corresponding to probable in service failure sites. The residual strains and stresses were characterised using neutron diffraction techniques in components with high and low quench stresses to validate a FEA study, and also to appraise the evolution of a commercial stress relief method. An excellent correlation existed between the simulations and measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.