Abstract
Wearable and implantable electronics are standing at the frontiers of science and technology, driven by the increasing demands from modernized lifestyles. Zinc-based batteries (ZBs) are regarded as ideal energy suppliers for these biocompatible electronics, but the corresponding biocompatibility validation is still in the initial stage. Meanwhile, complicated working conditions and some extreme electrolyte environments raise strict challenges, leaving less choices for safe ZBs. Toward higher operating stability and biocompatibility, this work proposes a hydrogel electrolyte featuring the moisture maintaining ability and a robust interface, which could further provide a milder environment for Zn-MnO2 batteries and Zn-air batteries. The cytotoxicity and tissue injury of batteries are evaluated with human cell lines and battery implantations on the animal models, which demonstrate the high biocompatibilityof ZBs, while preliminary wearable devices implementation further verifies their operating stability. This work may provide a pathway for developing and validating biocompatible ZBs, contributing to their future practical employment in relevant fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.