Abstract
Only in the past eight years has the feasibility of using satellite-borne altimeters to estimate sea ice freeboard and thickness been demonstrated, and these estimates still have uncertainties primarily associated with limited knowledge of snow loading on sea ice. Because accurate estimates of Arctic-wide sea ice thickness and volume are fundamental inputs to global climate models, validation of satellite-derived thickness estimates using independent data is required. A detailed assessment of freeboard retrieved by the Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud, and land Elevation Satellite has been carried out using high-resolution laser altimetry from the National Aeronautics and Space Administration's Airborne Topographic Mapper (ATM), the Delay-Doppler radar altimeter, and digital photography collected along a 300-km segment of sea ice in the Canada Basin. Exploiting the repeat coverage of the aircraft flight line, a correction was applied to GLAS footprint geolocations to adjust for sea ice drift that occurred during the time between satellite and aircraft acquisitions. Comparisons of GLAS and ATM measurements over sea ice show excellent agreement (about a 0.00-m mean) with no apparent bias between data sets. Freeboard estimates were examined using data from GLAS and ATM independently, employing measurements over refrozen leads to estimate local sea surface heights (SSHs). The results demonstrate the sensitivity of freeboard and thickness calculations to an accurate estimation of local SSH. Snow depth derived by differencing laser and radar data was combined with the freeboard estimates to yield a mean sea ice thickness of ~ 5.5 m over a 250-km subsection of the flight track.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.