Abstract

High-level synthesis (HLS) compiles a algorithmic description (C or C++) into a digital hardware implementation (VHDL or Verilog) through a sequence of transformations. However, the complex compiling process may introduce an error in the produced register-transfer level (RTL) implementation. Global common subexpression elimination (GCSE) as a commonly used code motion technique in the scheduling of HLS is an error-prone and complex process that need to be validated. In this paper, we propose an equivalence checking method to validate GCSE with non-common variables used in the rest code in the scheduling of HLS by enhancing the path equivalence criteria. The source and target programs are modeled using Finite State Machine with Datapath (FSMD) that is essentially a Control and Data Flow Graph (CDFG). The experimental results show that our method can indeed validate the GCSE with non-common variables used in the rest code in HLS which has not been solved in the existing papers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.