Abstract

Objectives Drug repurposing, which finds new indications for existing drugs, has received great attention recently. The goal of our work is to assess the feasibility of using electronic health records (EHRs) and automated informatics methods to efficiently validate a recent drug repurposing association of metformin with reduced cancer mortality.Methods By linking two large EHRs from Vanderbilt University Medical Center and Mayo Clinic to their tumor registries, we constructed a cohort including 32 415 adults with a cancer diagnosis at Vanderbilt and 79 258 cancer patients at Mayo from 1995 to 2010. Using automated informatics methods, we further identified type 2 diabetes patients within the cancer cohort and determined their drug exposure information, as well as other covariates such as smoking status. We then estimated HRs for all-cause mortality and their associated 95% CIs using stratified Cox proportional hazard models. HRs were estimated according to metformin exposure, adjusted for age at diagnosis, sex, race, body mass index, tobacco use, insulin use, cancer type, and non-cancer Charlson comorbidity index.Results Among all Vanderbilt cancer patients, metformin was associated with a 22% decrease in overall mortality compared to other oral hypoglycemic medications (HR 0.78; 95% CI 0.69 to 0.88) and with a 39% decrease compared to type 2 diabetes patients on insulin only (HR 0.61; 95% CI 0.50 to 0.73). Diabetic patients on metformin also had a 23% improved survival compared with non-diabetic patients (HR 0.77; 95% CI 0.71 to 0.85). These associations were replicated using the Mayo Clinic EHR data. Many site-specific cancers including breast, colorectal, lung, and prostate demonstrated reduced mortality with metformin use in at least one EHR.Conclusions EHR data suggested that the use of metformin was associated with decreased mortality after a cancer diagnosis compared with diabetic and non-diabetic cancer patients not on metformin, indicating its potential as a chemotherapeutic regimen. This study serves as a model for robust and inexpensive validation studies for drug repurposing signals using EHR data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.