Abstract

Microalgae are in the focus for the production of recombinant proteins in research and potential commercial application. Inducible promoters represent important tools that potentially allow the expression of recombinant proteins at higher rates. In general, they are used to separate the culture growth phase from the production phase by initiating product formation after high cell densities have been achieved. This potentially offers a higher space-time yield, consequently improving the economics of a process. In the case of the green micro alga Chlamydomonas reinhardtii, a controlled switch between activation and deactivation of gene expression is possible by changes in cultivation parameters. In this work, parameters of induction and deactivation of the iron-responsive Fea1 promoter were analyzed over time in C. reinhardtii. The results presented for the strain CC4351 validate our previous findings presented for strain CC 400. The Fea1 promoter was successfully deactivated upon transferring the cells to medium containing 10 and 20µM Fe3+. Within 120h, cells showed only 1.7-6% of the initial fluorescence. Activation of the Fea1 promoter occurred promptly and prominently when cells were transferred to iron-deplete medium. In general, both strains showed a pronounced difference between the active and the inactive states of the Fea1 promoter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.