Abstract

The aim of this work was to optimise and validate the experimental conditions for the analysis of 20 polycyclic aromatic compounds (PACs) [19 polycyclic aromatic hydrocarbons (PAHs) and dibenzothiophene as polycyclic aromatic sulphur heterocycle (PASH)] in marine sediments by reversed-phase high-performance liquid chromatography (LC) coupled to photodiode array detection (DAD) and to mass spectrometry (MS). The LC–MS interface used was atmospheric pressure chemical ionization (APCI) in the positive ion mode. The operational parameters of the APCI interface and MS detection, such as organic modifier, fragmentation voltage, gain, vaporizer temperature, corona current, capillary voltage, drying gas (N 2) and nebulizer pressure, were studied. The sediments were subjected to microwave-assisted solvent extraction (MAE) and clean-up by solid-phase extraction (SPE). The relevance of the selected PACs lies in the fact that 16 PACs are classified by the US Environmental Protection Agency as priority pollutants; 17 PACs are detected in the Prestige oil spill; and 8 PACs are included in the priority substance list of the EU water policy. Recoveries from 47% to 102% were obtained for SRM 1944 certified reference sediment. The limits of quantitation were lower than 100 ng g −1 dry weight for most PACs, and good precision was achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call