Abstract

This paper investigates the possibility of using the material point method (MPM) to solve small strains quasi-static problems and dynamic problems related to large distortions. Traditional methods such as the finite element method (FEM) face difficulties when large strains are involved. Therefore, tools such as the MPM have become more important in recent years. As a new tool, the MPM needs to prove its functionality for geotechnical engineering problems. In first place the MPM mathematical formulation is shortly described. Next, numerical simulations of a shallow foundation, an unconfined compression test and a slope problem are performed in an open source MPM code. The results are compared with FEM simulations, analytical solutions and real laboratory tests. The study shows qualitative and quantitative agreement when compared; a better performance of MPM for solving stresses better than strains is detected. The set of simulations validates the MPM to solve geotechnical engineering problems when dealing with small and large strains. However, the traditional FEM showed a better performance for quasi-static cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.