Abstract
A methodology was developed to analyze boundary conditions, the size of the mesh and the turbulence of a mathematical model of CFD, which could explain hydrodynamic behavior on facultative stabilization ponds, FSP, built to pilot scale: conventional pond, CP, baffled pond, BP, and baffled-mesh pond, BMP. Models dispersion studies were performed in field for validation, taking samples into and out of the FSP, the information was used to carry out CFD model simulations of the three topologies. Evaluated mesh sizes ranged from 500,000 to 2,000,000 elements. The boundary condition in Pared surface-free slip showed good qualitative behavior and the turbulence model κ–ε Low Reynolds yielded good results. The biomass contained in LFS generates interference on dispersion studies and should be taken into account in assessing the CFD modeling, the tracer injection times, its concentration at the entrance, the effect of wind on CFD, and the flow models adopted as a basis for modeling are parameters to be taken into account for the CFD model validation and calibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.