Abstract

We present an expository, general analysis of valid post-selection or post-regularization inference about a low-dimensional target parameter in the presence of a very high-dimensional nuisance parameter that is estimated using selection or regularization methods. Our analysis provides a set of high-level conditions under which inference for the low-dimensional parameter based on testing or point estimation methods will be regular despite selection or regularization biases occurring in the estimation of the high-dimensional nuisance parameter. A key element is the use of so-called immunized or orthogonal estimating equations that are locally insensitive to small mistakes in the estimation of the high-dimensional nuisance parameter. As an illustration, we analyze affine-quadratic models and specialize these results to a linear instrumental variables model with many regressors and many instruments. We conclude with a review of other developments in post-selection inference and note that many can be viewed as special cases of the general encompassing framework of orthogonal estimating equations provided in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call