Abstract
The optical, electrical, and chemical properties of semiconductor surfaces are largely determined by their electronic states close to the Fermi level (E{F}). We use scanning tunneling microscopy and density functional theory to clarify the fundamental nature of the ground state Ge(001) electronic structure near E{F}, and resolve previously contradictory photoemission and tunneling spectroscopy data. The highest energy occupied surface states were found to be exclusively back bond states, in contrast to the Si(001) surface, where dangling bond states also lie at the top of the valence band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.