Abstract
The pseudorotation of tetrahydrofuran (THF) (C(4)H(8)O) has been studied using density functional theory, with respect to the valence orbital responses to the ionization potentials and to orbital electron and momentum distributions. Three conformations of THF, the global minimum structure C(s), local minimum structure C(2), and a transition state structure C(1), which are characteristic configurations on the potential energy surface, are examined using the SAOP/et-pVQZ//B3LYP/6-311++G** models with the aforementioned dual space analysis. It is noted in the ionization energy spectra that the minimum structures C(s) and C(2) are not directly connected by pseudorotation, but through the transition state structure C(1). As a result, some orbitals of the C(s) conformer are able to "correlate" to orbitals of the C(2) conformer without a strict symmetry constraint, i.e., orbital 7a' of the C(s) conformer is correlated to orbital 5b of the C(2) conformer. It is also noted that although the valence orbital ionization potentials are not significantly altered by the pseudorotation of THF, their spectra (mainly due to excitation) are quite different indeed. Detailed orbital analysis based on dual space analysis is given. The valence orbital behavior of the conformations is orbital dependent. It can be approximately divided into three groups: the "signature group" is associated with orbitals experiencing significant changes. The frontier orbitals are in this group. The "nearly identical group" includes orbitals without apparent changes across the conformations. Most of the orbitals showing a certain degree of distortion during the pseudorotation process belong to the third group. The present study demonstrates that a comprehensive understanding of the pseudorotation of THF and its dynamics requires multidimensional information and that the information gained from momentum space is complementary to that from the more familiar coordinate space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.