Abstract

ABSTRACTStudies of the unimolecular decay, following the excitation of core electrons of the carbon and fluorine atoms in carbon tetrafluoride and silicon and fluorine in silicon tetrafluoride by monochromatic, synchrotron radiation, provided evidence for a “valence bond depopulation” fragmentation mechanism. The fragmentation processes were examined using time-of flight mass spectroscopy. The mass spectra show the distribution of ions collected in coincidence with low and high energy electrons. Distinct changes in the mass spectra with atomic site of excitation and photon energy are observed. The observation of F2+ ions in the time-of-flight mass spectra following excitation of a fluorine is electron in SiF4 is significant because it provides direct evidence for the formation of a localized, two-hole, final valence state that persists on the time scale of fragmentation. In contrast, the lack of F2+ ions from CF4, indicates that the fragmentation occurs through a delocalized two-hole state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.