Abstract
Experimental results are presented for the substrate current appearing in thin oxide metal-oxide-silicon capacitors with a shallow n/p junction beneath the gate when a positive gate voltage in the tunneling regime is applied. The analysis of the current-voltage characteristics shows that for an oxide voltage drop lower than about 5 V the substrate current is due to electron tunneling from the silicon valence band. The dispersion relation in the energy range extending 3 eV below the oxide conduction band is determined from the voltage dependence of the current in the direct tunneling regime. An effective mass of about 0.8 m e is found near the edge of the oxide conduction band, while for lower energies a strong decrease of the effective mass is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.