Abstract

Contracted Gaussian-type function sets are developed for the valence 5s and 4d orbitals and for correlating functions of the second transition-metal atoms Y through Cd. A segmented contraction scheme is used for its compactness and efficiency. Contraction coefficients and exponents are determined by minimizing the deviation of the target function from the average of accurate atomic natural orbitals for the three lowest LS states arising from the 5s24d n-2, 5s1 4d n-1, and 5s0d n configurations. The present basis sets give a well balanced description for the three configurations at the Hartree—Fock level, and yield more than 97% of the atomic correlation energies predicted by accurate natural orbitals of the same size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.