Abstract
In this paper, we formulate a new research problem of learning from vaguely labeled one-class data streams, where the main objective is to allow users to label instance groups, instead of single instances, as positive samples for learning. The batch-labeling, however, raises serious issues because labeled groups may contain non-positive samples, and users may change their labeling interests at any time. To solve this problem, we propose a Vague One-Class Learning (VOCL) framework which employs a double weighting approach, at both instance and classifier levels, to build an ensembling framework for learning. At instance level, both local and global filterings are considered for instance weight adjustment. Two solutions are proposed to take instance weight values into the classifier training process. At classifier level, a weight value is assigned to each classifier of the ensemble to ensure that learning can quickly adapt to users' interests. Experimental results on synthetic and real-world data streams demonstrate that the proposed VOCL framework significantly outperforms other methods for vaguely labeled one-class data streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.