Abstract

The vagina is a fibromuscular tube-shaped organ spanning from the hymenal ring to the cervix that plays critical roles in menstruation, pregnancy, and female sexual health. Vaginal tissue constituents, including cells and extracellular matrix components, contribute to tissue structure, function, and prevention of injury. However, much microstructural function remains unknown, including how the fiber-cell and cell-cell interactions influence macromechanical properties. A deeper understanding of these interactions will provide critical information needed to reduce and prevent vaginal injuries. Our objectives for this work herein are to first engineer a suite of biomaterials for vaginal tissue engineering and second to characterize the performance of these biomaterials in the vaginal microenvironment. We successfully created fiber-reinforced hydrogels of gelatin-elastin electrospun fibers infiltrated with gelatin methacryloyl hydrogels. These composites recapitulate vaginal material properties, including stiffness, and are compatible with the vaginal microenvironment: biocompatible with primary vaginal epithelial cells and in acidic conditions. This work significantly advances progress in vaginal tissue engineering by developing novel materials and developing a state-of-the-art tissue engineered vagina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.