Abstract

Not only men suffer from sexual dysfunction, but the number of women who have sexual dysfunction rises. Therefore, it is necessary to develop an objective diagnostic technique to examine the sexual dysfunction of female patients, who are afflicted with the disorders. For this purpose, we developed a diffuse optical spectroscopy (DOS) probe to measure the change of oxy-, deoxy-, and total hemoglobin concentration along with blood flow from vaginal wall of female rats. A cylindrical stainless steel DOS probe with a diameter of 3 mm was designed for the vaginal wall of rats which consisted of two lasers (785 and 850nm) and two spectrometers with a separation of 2 mm. A thermistor was placed on the top of the probe to measure the temperature change from vaginal wall during experiments. A modified Beer-Lambert’s law is utilized to acquire the changes of oxy-, deoxy-, and total hemoglobin, and blood flow information is obtained by diffuse speckle contrast analysis technique. For the experiments, Sprague Dawley (~400 g) female rats were divided into two groups (control and vaginal dryness model). Vaginal oxygenation, blood flow and temperature were continuously monitored before and after sexual around induced by apomorphine. After the measurement, histologic examination was performed to support the results from DOS probe in the vaginal wall. The hemodynamic information acquired by the DOS probe can be utilized to establish an objective and accurate standard of the female sexual disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.