Abstract

There is an urgent need for the development of vaccines against genital virus infections that are transmitted through heterosexual intercourse, including the HIV and HPV. In general, the surface of female genital mucosa, including vaginal mucosa, is the most common site of initiation of these infections. Thus, it is becoming clear that successful vaccines must induce both cellular and humoral immune responses in both the local genital tract and systemically. We believe that a strong vaginal immune response could be obtained by inducing strong gene expression of antigen-coding DNA in the local targeted tissue. In order to improve transfection efficiency in the vagina, it is important that methods allowing breakthrough of the various barriers, such as the epithelial layer, cellular and nuclear membrane, are developed. Therefore, systems providing less invasive and more effective delivery into the subepithelial layer are required. In this review, we will introduce our studies into efficient vaginal DNA vaccination methods, focusing on the effects of the menstrual cycle, utilization of the combination of functional peptides, and use of a needle-free injector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call