Abstract

Reproductive inefficiency in cattle has major impacts on overall productivity of cattle operations, increasing cost of production, and impacting the sustainability of the cattle enterprise. Decreased reproductive success and associated disease states have been correlated with the presence of specific microbes and microbial community profiles, yet details of the relationship between microbial communities and host physiology are not well known. The present study profiles and compares the microbial communities in the bovine uterus and vagina using 16S rRNA sequencing of the V1–V3 hypervariable region at the time of artificial insemination. Significant differences (p < 0.05) between the vaginal and uterine communities were observed at the level of α-diversity metrics, including Chao1, Shannon’s Diversity Index, and observed OTU. Greater clustering of vaginal OTU was apparent in principal coordinate analysis compared to uterine OTU, despite greater diversity in the vaginal community in both weighted and unweighted UniFrac distance matrices (p < 0.05). There was a significantly greater relative abundance of unassigned taxa in the uterus (p = 0.008), otherwise there were few differences between the overall community profiles. Both vaginal and uterine communities were dominated by Firmicutes, although the relative abundance of rRNA sequences corresponding to species in this phylum was significantly (p = 0.007) lower in the uterine community. Additional differences were observed at the genus level, specifically in abundances within Clostridium (p = 0.009), Anaerofustis (p = 0.018), Atopobium (p = 0.035), Oscillospira (p = 0.035), 5-7N15 (p = 0.035), Mycoplasma (p = 0.035), Odoribacter (p = 0.042), and within the families Clostridiaceae (p = 0.006), Alcaligenaceae (p = 0.021), and Ruminococcaceae (p = 0.021). Overall, the comparison revealed differences and commonalities among bovine reproductive organs, which may be influenced by host physiology. The increased abundance of unassigned taxa found in the uterus may play a significant biological role in the reproductive status of the animal. The study represents an initial dataset for comparing bacterial communities prior to establishment of pregnancy.

Highlights

  • Reproductive efficiency is necessary for the survival of any species

  • The present study explores the potential of this approach, by focusing on vaginal and uterine microbiomes of synchronized animals 2 days prior to artificial insemination (AI)

  • All cows involved in this study were part of the East Tennessee Research and Education Center (ETREC) registered Angus herd

Read more

Summary

Introduction

Reproductive efficiency is necessary for the survival of any species. Failure to reproduce or maintain pregnancy represents a significant cost to many species, including humans, exotic or endangered species, and domestic livestock. Cattle, reproductive loss and inefficiency results in ∼$600 million to $1.4 billion lost annually (Bellows et al, 2002; De Vries, 2006). While these losses are multifaceted and influenced by many factors such as disease states (Michi et al, 2016), male and female gametes (Druet et al, 2009; Valour et al, 2015), and genetics related to male and female fertility (Berry et al, 2014; Carthy et al, 2014), these factors cannot account for all reproductive related losses

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.