Abstract
1. Whole-cell voltage-clamp recordings in an in vitro brainstem-cranial nerve explant preparation were used to assess the local circuitry activated by vagal input to nucleus tractus solitarii (NTS) neurones in immature rats. 2. All neurones that responded to vagal stimulation displayed EPSCs of relatively constant latency. Approximately 50 % of these also demonstrated variable-latency IPSCs, and approximately 31 % also displayed variable-latency EPSCs to vagal stimulation. All neurones also had spontaneous EPSCs and IPSCs. 3. Evoked and spontaneous EPSCs reversed near 0 mV and were blocked by the glutamate AMPA/kainate receptor antagonists 6,7-nitroquinoxaline-2,3-dione (DNQX) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) at rest. Evoked EPSCs had rapid rise times (< 1 s) and decayed monoexponentially (tau = 2. 04 +/- 0.03 ms) at potentials near rest. 4. At holding potentials positive to approximately -50 mV, a slow EPSC could be evoked in the presence of DNQX or CNQX. This current peaked at holding potentials near -25 mV and was blocked by the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5). It was therefore probably due to activation of NMDA receptors by vagal afferent fibres. 5. Fast IPSCs reversed near -70 mV and were blocked by the GABAA receptor antagonist bicuculline. In addition, bicuculline enhanced excitatory responses to vagal stimulation and increased spontaneous EPSC frequency. Antagonists to AMPA/kainate receptors reversibly blocked stimulus-associated IPSCs and also decreased the frequency of spontaneous IPSCs. 6. These findings suggest that glutamate mediates synaptic transmission from the vagus nerve to neurones in the immature NTS by acting at non-NMDA and NMDA receptors. NTS neurones may also receive glutamatergic and GABAergic synaptic input from local neurones that can be activated by vagal input and/or regulated by amino acid inputs from other brainstem neurones.1. Whole-cell voltage-clamp recordings in an in vitro brainstem-cranial nerve explant preparation were used to assess the local circuitry activated by vagal input to nucleus tractus solitarii (NTS) neurones in immature rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.