Abstract
The purpose of this paper was to calculate vagal tone (V) for 17 normal human fetuses in quiet sleep (QS) between 36 and 40 weeks gestation. The fetal cardiac electrical signal was captured transabdominally in 3-min blocks at a rate of 833 times per second and fetal R-waves were extracted using adaptive signal processing techniques. Fetal R-wave interbeat intervals were converted to equally spaced, time-based data, and the low-frequency component was removed using a 21-point third-order moving polynomial. The parameter V was calculated by taking the natural logarithm of the sum of the power densities between 0.3 Hz and 1.3 Hz. We found that fetal breathing was associated with an approximately 25% increase in V as compared to nonbreathing, 3.33 +/- 0.48 versus 2.57 +/- 0.47, p < 0.0001. Furthermore, there was a significant linear relationship between the mean single-fetus V during spontaneous respiration and the mean single-fetus V during normally occurring apneic periods, r = 0.772, p < 0.002. We conclude that respiratory activity is associated with a significant increase in vagal tone for normal human fetuses in QS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.