Abstract

In decerebrate newborn rats, serotonin (5-HT) is a respiratory depressant via activation of 5-HT2 receptors, whereas it evokes respiratory stimulant effects when applied to the isolated brainstem obtained from the newborn rat. This discrepancy could be due to deafferentation in the in vitro preparation. The aim of our study was to analyse the role of vagal afferents in the modulation of central respiratory effects of 5-HT. In decerebrate cervically or abdominally bivagotomized newborn rats aged between 0 and 3 days, we recorded electrical activity from the diaphragm and from a hypoglossally innervated tongue muscle, as well as cardiac frequency (Fc), before and after application of 5-HT to the floor of the IVth ventricle. The effects of related agents (a 5-HT1A agonist, 8-OH DPAT, and a 5-HT2 agonist, DOI) were studied in cervically bivagotomized animals. For comparison, and to assess the spontaneous variability in inspiratory frequency (Fi) and Fc, sham groups were studied. Each group comprised ten newborn rats. In cervically bivagotomized newborn rats, 5-HT induces a significant increase in Fi, which is the opposite to that observed in decerebrate newborn rats with intact vagi. This respiratory effect is mediated in particular, via activation of 5-HT1A. By contrast, in abdominally bivagotomized newborn rats, a decrease in Fi was observed in response to 5-HT (as previously described in decerebrate animals with intact vagi). We conclude that pulmonary vagal afferents modulate the central respiratory action of 5-HT in decerebrate newborn rats, explaining the conflicting results between in vivo and in vitro experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call