Abstract
Penfield's sensory homunculus included visceral organs at its lateral extreme, and vagal input was recently identified lateral to the intraoral representation in primary somatosensory cortex (S1) of rats. We tested whether vagal input is similarly located in cats where area 3b (equivalent to S1) is clearly distinguishable from adjacent regions. Field potentials were recorded from the intact dura over the left hemisphere using electrical stimulation of the left or right cervical vagus nerve in seven cats. A surface positive-negative potential was evoked from either side in the lateral part of the sigmoid gyrus. Finer mapping made at the pial surface with a microelectrode identified a focal site anteromedial to the anterior tip of the coronal sulcus. Depth recordings demonstrated polarity reversals and multi-unit vagal responses, indicating that the potentials were generated by an afferent activation focus in the middle layers of the cortex. The S1 mechanoreceptive representation was localized by mapping multi-unit somatosensory receptive fields in the middle cortical layers near the coronal sulcus. The vagal-evoked potential site was distinctly anterior to the intraoral S1 representation and adjacent to the masseteric-nerve-evoked potential focus. Lesions made at the focal site revealed that this site is cytoarchitectonically located in area 3a not area 3b. Thus vagal input to the sensorimotor cortex in cats resembles deep rather than cutaneous somatic input, similar to the localization of nociceptive-specific input to area 3a in monkeys. The possibilities are considered that this vagal input is involved in motor control and in the sensory experience of visceral afferent activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.