Abstract

BackgroundIncreasing number of studies provide evidence that the vagus nerve stimulation (VNS) dampens inflammation in peripheral visceral organs. However, the effects of afferent fibers of the vagus nerve (AFVN) on anti-inflammation have not been clearly defined. Here, we investigate whether AFVN are involved in VNS-mediated regulation of hepatic production of proinflammatory cytokines.MethodsAn animal model of hepatitis was generated by intraperitoneal (i.p.) injection of concanavalin A (ConA) into rats, and electrical stimulation was given to the hepatic branch of the vagus nerve. AFVN activity was regulated by administration of capsaicin (CAP) or AP-5/CNQX and the vagotomy at the hepatic branch of the vagus nerve (hVNX). mRNA and protein expression in target tissues was analyzed by RT-PCR, real-time PCR, western blotting and immunofluorescence staining. Hepatic immune cells were analyzed by flow cytometry.ResultsTNF-α, IL-1β, and IL-6 mRNAs and proteins that were induced by ConA in the liver macrophages were significantly reduced by the electrical stimulation of the hepatic branch of the vagus nerve (hVNS). Alanine transaminase (ALT) and aspartate transaminase (AST) levels in serum and the number of hepatic CD4+ and CD8+ T cells were increased by ConA injection and downregulated by hVNS. CAP treatment deteriorated transient receptor potential vanilloid 1 (TRPV1)-positive neurons and increased caspase-3 signals in nodose ganglion (NG) neurons. Concomitantly, CAP suppressed choline acetyltransferase (ChAT) expression that was induced by hVNS in DMV neurons of ConA-injected animals. Furthermore, hVNS-mediated downregulation of TNF-α, IL-1β, and IL-6 expression was hampered by CAP treatment and similarly regulated by hVNX and AP-5/CNQX inhibition of vagal feedback loop pathway in the brainstem. hVNS elevated the levels of α7 nicotinic acetylcholine receptors (α7 nAChR) and phospho-STAT3 (Tyr705; pY-STAT3) in the liver, and inhibition of AFVN activity by CAP, AP-5/CNQX and hVNX or the pharmacological blockade of hepatic α7 nAChR decreased STAT3 phosphorylation.ConclusionsOur data indicate that the activity of AFVN contributes to hepatic anti-inflammatory responses mediated by hVNS in ConA model of hepatitis in rats.

Highlights

  • Vagus nerve is the major parasympathetic nerve connecting the brain to the cardiopulmonary and most of the visceral organs

  • Results Hepatic branch of the vagus nerve (hVNS) downregulates hepatic expression of inflammatory cytokine mRNAs and proteins in concanavalin A (ConA)‐injected animals In the present study, we applied vagus nerve stimulation (VNS) to the hepatic branch of the vagus nerve in order to study the effect of the electrical stimulation on the anti-inflammatory reflex via the feedback interaction between the hepatic afferent and efferent fibers of the vagus nerve, while minimizing physiological interference to other visceral organs and cardiovascular systems

  • To investigate whether hVNS has the effects on the inflammatory responses in the liver tissue, we delivered hVNS 24 h after ConA injection and analyzed the hepatic expression of TNF-α, IL-1β and IL-6 inflammatory cytokines 24 h later. mRNA levels of TNFα, IL-1β, and IL-6 were significantly elevated by ConA treatment and down-regulated by hVNS (Fig. 1a–c)

Read more

Summary

Methods

An animal model of hepatitis was generated by intraperitoneal (i.p.) injection of concanavalin A (ConA) into rats, and electrical stimulation was given to the hepatic branch of the vagus nerve. AFVN activity was regulated by administration of capsaicin (CAP) or AP-5/CNQX and the vagotomy at the hepatic branch of the vagus nerve (hVNX). MRNA and protein expression in target tissues was analyzed by RT-PCR, real-time PCR, western blotting and immunofluorescence staining. Hepatic immune cells were analyzed by flow cytometry

Results
Conclusions
Introduction
Materials and methods
Experiments
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call