Abstract

Photoinduced optical absorption changes in the vacuum-ultraviolet (VUV) spectral range have been measured in poly(methylphenylsilylene) thin films under varied excitation photon energies and local atmospheric environments. Spectral changes in resonances associated with both the linear chain Si–Si backbone and the side groups of the hybrid structure are consistent with the photodisruption of backbone topology. These effects are more pronounced under a higher energy photon exposure (5.10eV) resonant with the fundamental π-π* transition of the phenyl moiety. An aerobic environment also favors more dramatic bleaching of VUV absorption in these materials. Finally, the present study enables a Kramers-Kronig analysis of absorption change from the visible to the VUV. These results do not adequately describe the photoinduced refractive index changes measured at 632.8nm via ellipsometry, indicating the presence of other contributions to the index modifications observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.