Abstract

Inorganic cesium lead iodide perovskite CsPbI3 is attracting great attention as a light absorber for single or multi-junction photovoltaics due to its outstanding thermal stability and proper band gap. However, the device performance of CsPbI3 -based perovskite solar cells (PSCs) is limited by the unsatisfactory crystal quality and thus severe non-radiative recombination. Here, vacuum-assisted thermal annealing (VATA) is demonstrated as an effective approach for controlling the morphology and crystallinity of the CsPbI3 perovskite films formed from the precursors of PbI2 , CsI, and dimethylammonium iodide (DMAI). By this method, a large-area and high-quality CsPbI3 film is obtained, exhibiting a much reduced trap-state density with prolonged charge lifetime. Consequently, the solar cell efficiency is raised from 17.26 to 20.06 %, along with enhanced stability. The VATA would be an effective approach for fabricating high-performance thin-film CsPbI3 perovskite optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.