Abstract

In this work, thin-film composite polyamide membranes were fabricated using triethylenetetramine (TETA) and trimesoyl chloride (TMC) following the vacuum-assisted interfacial polymerization (VAIP) method for the pervaporation (PV) dehydration of aqueous isopropanol (IPA) solution. The physical and chemical properties as well as separation performance of the TFCVAIP membranes were compared with the membrane prepared using the traditional interfacial polymerization (TIP) technique (TFCTIP). Characterization results showed that the TFCVAIP membrane had a higher crosslinking degree, higher surface roughness, and denser structure than the TFCTIP membrane. As a result, the TFCVAIP membrane exhibited a higher separation performance in 70 wt.% aqueous IPA solution at 25 °C with permeation flux of 1504 ± 169 g∙m−2∙h−1, water concentration in permeate of 99.26 ± 0.53 wt%, and separation factor of 314 (five times higher than TFCTIP). Moreover, the optimization of IP parameters, such as variation of TETA and TMC concentrations as well as polymerization time for the TFCVAIP membrane, was carried out. The optimum condition in fabricating the TFCVAIP membrane was 0.05 wt.% TETA, 0.1 wt% TMC, and 60 s polymerization time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.