Abstract

As one of the ideal tools for monitoring the formation and evolution of solar storms, the vacuum ultraviolet (VUV) detector should have both a fast temporal response and an array structure that enables image formation. Here, by combining a nontraditional graphene processing technique with traditional metal organic chemical vapor deposition epitaxy technology, we created hybrid heterostructure (HH) arrays of p-Gr/AlN/p-Si with VUV photovoltaic response capability and silicon integration potential. The HH arrays not only exhibit ultrafast temporal response (rise time of only 120 ns) and an extremely high Ion/Ioff ratio of 107, but also achieve the imaging demonstration of a VUV pattern for the first time. The HH technique provides a possible new path for the development of VUV imaging devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call