Abstract

To lower the launch cost and prolong the lifetime of a deep space explorer, solar- and astrophysicists and photonics scientists have devoted much time and energy in exploring and developing a compact and low-power-consumption semiconductor-based vacuum ultraviolet (VUV) photodetector. However, the target has not yet been achieved due to the lack of high external quantum efficiency (EQE) VUV photoconductive materials. Here, we found that two-dimensional MgO, obtained via conformal anneal synthesis method, had ultrasensitive photoresponse to VUV light. It can identify an extremely weak VUV signal (0.85 pW), with a high EQE of 1539%. Such ultrasensitive photoresponse is attributed to the high charge-collection efficiency of excited carriers. Our results provide an idea for developing integrated VUV devices with high responsivity and low power consumption, which will prolong the service time and lower the launch cost of a space explorer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.