Abstract

We have demonstrated the two-color vacuum ultraviolet (VUV)-infrared (IR) photoinduced Rydberg ionization (PIRI) experiment. Trichloroethene (ClCH=CCl2) and trans-2-butene (trans-CH3CH=CHCH3) were prepared in Rydberg states in the range of effective principal quantum number n* approximately 7-93 by VUV excitation prior to IR-induced autoionization. The observed VUV-IR-PIRI spectra are found to be independent of n*, suggesting that the electron Rydberg orbital is conserved, i.e., the Rydberg electron is behaving as a spectator during the excitation process. The observed IR active C-H stretching vibrational frequencies nu12+ = 3072+/-5 cm(-1) for ClCH=CCl2+ and nu23+ =2908+/-3 cm(-1), nu25+ =2990+/-10 cm(-1) and nu30+ =3022+/-10 cm(-1) for trans-CH3CH=CHCH3+ are compared with predictions based on ab initio quantum-chemical procedures and density functional calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call