Abstract

Vacuum-ultraviolet (VUV) circular dichroism (CD) spectroscopy has recently been used for secondary structure analysis of proteins; however, the contribution of aromatic side chains to protein VUV CD spectra is unresolved. In this report, VUV CD spectra of 10 Escherichia coli dihydrofolate reductase (DHFR) mutants, in which each phenylalanine or tyrosine residue was mutated to leucine, were measured down to 175 nm at 25 °C and pH 8.0 to elucidate the contributions of these aromatic side chains to the high-energy transitions of peptide bonds. The VUV CD spectra of these mutants were different from the spectrum of the wild-type protein, indicating that the contribution of the phenylalanine and tyrosine side chains of DHFR extends to the VUV region. Furthermore, the VUV CD spectrum and the folate- or NADP(+)-induced spectral change of F103L mutant DHFR indicated a modification and regeneration of exciton coupling between the Trp47 and Trp74 side chains, respectively, suggesting that exciton coupling may also contribute to the CD spectrum of DHFR in the VUV region. These results should be useful for theoretically characterizing the contribution of aromatic side chains to protein CD spectra, leading to the improvement of protein secondary-structure analysis by VUV CD spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call