Abstract

Polymeric zinc acrylate (pZA) was introduced as an organic interlayer for the inorganic/organic multilayer passivation of flexible organic thin film transistors (OTFTs). The pZA film was deposited by thermally evaporating a zinc diacrylate (ZDA) monomer under high vacuum (<10−5 Torr) and applying UV irradiation. The conversion of ZDA into a polymeric phase was confirmed by FTIR analysis, breakdown voltage measurements and the photopatternability of the film before and after UV irradiation. Vacuum-thermally evaporated pZA film showed good surface smoothness and a high permeation activation energy (53 kJ mol−1) compared to conventional polymeric films. As an interlayer for multilayer passivation, vacuum-thermally evaporated silicon monoxide (SiO) was introduced as the inorganic counterpart of the pZA interlayer. A multilayer film comprising 6.5 pairs of layers showed a water vapor transmission rate (WVTR) of 0.055 g m−2 per day, a 25-fold improvement over the WVTR of a single SiO film (1.207 g m−2 per day). OTFTs encapsulated with 6.5 pairs of polymeric zinc acrylate/silicon monoxide layers showed prolonged stability over 97 days. In addition, the passivation layer did not show crack formation, and sustained barrier characteristics, even after 500 bending tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call