Abstract

We propose a new class of gravity-matter theories, describing [Formula: see text] gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space–time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root [Formula: see text] of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space–time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term [Formula: see text], with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” [Formula: see text]. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) [Formula: see text] and a nonzero gauge field vacuum [Formula: see text], which corresponds to a charge confining phase; (ii) [Formula: see text] (“kinetic vacuum”) and ordinary gauge field vacuum [Formula: see text] which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) [Formula: see text] (“kinetic vacuum”) and a nonzero gauge field vacuum [Formula: see text], which again corresponds to a charge confining phase. In all three cases, the space–time metric is de Sitter or Schwarzschild–de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner–Nordström–de Sitter geometry carrying an additional constant radial background electric field. As a result, we obtain two classes of gravitational bag-like configurations with properties, which on one hand partially parallel some of the properties of the solitonic “constituent quark” model and, on the other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call