Abstract
In the standard model, if the top quark mass m t is larger than some critical value depending on the Higgs mass m H, then we live in an unstable vacuum state corresponding to a local minimum of the effective potential. An experimental discovery of the top quark with m t above this critical value would invalidate the standard version of the wormhole theory, according to which the vacuum energy should be zero at the absolute minimum of the effective potential. However, unless the top quark is much heavier than this, the lifetime is much heavier than this, the lifetime of the unstable vacuum state is greater than the age of our part of the universe. In this paper we develop a stochastic approach to tunneling and apply it to examine the possibility that cosmic ray collisions may trigger vacuum decay and derive improved cosmological bounds on m H and m t.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.