Abstract

Binary Ti alloys bearing β eutectoid stabilisers (i.e. Cu and Mn) were produced by powder blending followed by cold pressing and vacuum sintering as this is identified as an alternative cost-effective manufacturing method to lower the cost of Ti alloys. The sintered Ti-Cu and Ti-Mn alloys were subsequently heat treated via a solution treatment in the β field plus aging. The aim is to investigate a cheap and efficient method to change and tailor the mechanical behaviour via microstructural control. Heat treating the binary Ti-Cu and Ti-Mn alloys slightly affects their relative density and significantly changes the nature of the phases composing each material. This includes the transformation of the typical lamellar structure into lamellar hypo-eutectoid structures as well as the formation of metastable phases. The response to the heat treatment and the phases formed are clearly influenced by the chemistry of the β eutectoid bearing binary Ti alloys. Performance comparable to those of thermomechanically hot forged alloys are nonetheless achieved via a simple heat treatment procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call