Abstract

We consider a computational model composed of ideal Gottesman-Kitaev-Preskill stabilizer states, Gaussian operations including all rational symplectic operations and all real displacements, and homodyne measurement. We prove that such architecture is classically efficiently simulatable by explicitly providing an algorithm to calculate the probability density function of the measurement outcomes of the computation. We also provide a method to sample when the circuits contain conditional operations. This result is based on an extension of the celebrated Gottesman-Knill theorem, via introducing proper stabilizer operators for the code at hand. We conclude that the resource enabling quantum advantage in the universal computational model considered by Baragiola et al. [Phys. Rev. Lett. 123, 200502 (2019)], composed of a subset of the elements given above augmented with a provision of vacuum states, is indeed the vacuum state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call