Abstract

The vacuum propagation of a laser beam is strictly solved on the basis of (1) the wave equation, (2) Gauss’s law, (3) finite power, and (4) a group velocity equal to c. The direct vacuum acceleration of the classic charge is then studied based on the strictly solved vacuum laser field. Different vacuum states of the laser beam are chosen by the physical nature of the interface between the vacuum and the solid optical material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.