Abstract
The enrichment of low concentration coalbed methane using adsorption process with activated carbon adsorbent was studied in this work. Adsorption isotherms of methane, nitrogen and carbon dioxide on activated carbon were measured by volumetric method, meanwhile a series of breakthrough tests with single component, binary components and three components feed mixture has been performed for exploring dynamic adsorption behaviors. Moreover, a rigorous mathematical model of adsorption bed containing mass, energy, and momentum conservation equation as well as dual-site Langmuir model with the Linear driving force model for gas–solid phase mass transfer has been proposed for numerical modeling and simulation of fixed bed breakthrough process and vacuum pressure swing adsorption process. Furthermore, the lumped mass transfer coefficient of methane, nitrogen and carbon dioxide on activated carbon adsorbent has been determined to be 0.3 s −1 , 1.0 s −1 and 0.06 s −1 by fitting the breakthrough curves using numerical calculation. Additionally, a six bed VPSA process with twelve step cycle sequence has been proposed and investigated for low concentration coalbed methane enrichment. Results demonstrated that the methane molar fraction in feed mixture ranged from 10% to 50% could be enriched to 32.15% to 88.75% methane in heavy product gas with a methane recovery higher than 83% under the adsorption pressure of 3 bar (1 bar = 10 5 Pa) and desorption pressure of 0.1 bar. Energy consumption of this VPSA process was varied from 0.165 kW·h·m − 3 CH 4 to 0.649 kW·h·m − 3 CH 4 . Finally, a dual-stage VPSA process has been successfully developed to upgrade a low concentration coalbed methane containing 20% methane to a target product gas with methane purity higher than 90%, meanwhile the total methane recovery was up to 98.71% with a total energy consumption of 0.504 kW·h·m − 3 CH 4 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.