Abstract

Equipped with new powerful and efficient methods for computing quantum expectation values in static-spherically symmetric spacetimes in arbitrary dimensions, we perform an in-depth investigation of how the quantum vacuum polarization varies with the parameters in the theory. In particular, we compute and compare the vacuum polarization for a quantum scalar field in the Schwarzschild anti-de Sitter black hole spacetime for a range of values of the field mass and field coupling constant as well as the black hole mass and number of spacetime dimensions. In addition, a new approximation for the vacuum polarization in asymptotically anti-de Sitter black hole spacetimes is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call