Abstract
The present study focuses on vacuum induction melting and investment casting of neargamma TiAl intermetallic alloys. The attention is mainly given to a cost-effective melting process in which a primary alloy ingot is re-melted in a ceramic crucible and cast into a ceramic shell mould. Two types of crucibles (based on Al2O3 and Y2O3) are considered. The most detrimental reactions that govern the contamination of the molten alloy with ceramic particles were determined. Results suggest that the crucible wall attack can be considerably limited by using either the Y2O3 (with no SiO2-type binder) or Al2O3 crucibles with a suitable coating. After pouring, a mechanical interaction associated with different thermal expansions of TiAl casts and ceramic shell moulds can result in serious product damage. A simple 1D-1D model of the cooling process was formulated and the heat flow as well as stress states in the cast-mould system were numerically solved. Process parameters (melt superheat, initial mould temperature, cooling kinetics and mould composition) were optimized in order to reduce the stress in the casts. The optimized parameters delimited a processing window in which complex-shaped TiAl castings like turbocharger wheels can be fabricated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.