Abstract

We experimentally study a vacuum-induced Autler-Townes doublet in a superconducting three-level artificial atom strongly coupled to a coplanar waveguide resonator and simultaneously to a transmission line. The Autler-Townes splitting is observed in the reflection spectrum from the three-level atom in a transition between the ground state and the second excited state when the transition between the two excited states is resonant with a resonator. By applying a driving field to the resonator, we observe a change in the regime of the Autler-Townes splitting from quantum (vacuum-induced) to classical (with many resonator photons). Furthermore, we show that the reflection of propagating microwaves in a transmission line could be controlled by different frequency single photons in a resonator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call