Abstract
We present an integral formulation of the vacuum energy of Schrödinger operators on finite metric graphs. Local vertex matching conditions on the graph are classified according to the general scheme of Kostrykin and Schrader. While the vacuum energy of the graph can contain finite ambiguities the Casimir force on a bond with compactly supported potential is well defined. The vacuum energy is determined from the zeta function of the graph Schrödinger operator which is derived from an appropriate secular equation via the argument principle. A quantum graph has an associated probabilistic classical dynamics which is generically both ergodic and mixing. The results therefore present an analytic formulation of the vacuum energy of this quasi-one-dimensional quantum system which is classically chaotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modern Physics: Conference Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.