Abstract

In an investigation on kinetics of seedless barberry drying at 35, 45 and 55°C in vacuum and with water vapor and citric acid pre-treatments, the value of effective moisture Diffusivity (D<sub>eff</sub>) was calculated using the second Fick's diffusion equation, activation energy was determined and drying process was simulated by 10 common mathematical equations of thin layer-drying models. Results which were obtained from regression analysis of studied models showed that approximation of diffusion model had the best fitting for vacuum-drying of barberries through available data. Drying barberry took place in the falling rate drying period and pre-treated samples had higher drying rate. The effective diffusivity coefficient for vacuum-drying of barberry fruits was evaluated between 0.0228×10<sup>-10</sup> and 0.2538×10<sup>-10</sup> m<sup>2</sup>/s, which increased along with temperature rise. An Arrhenius equation for drying of seedless barberry with activation energy values ranged from 27.618 to 92.493 kJ/mol expressed the effect of temperature on moisture diffusivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.