Abstract

We describe the radiation phenomena which can take place in the physical vacuum such as Cherenkov-type shock waves. Their macroscopical characteristics – cone angle, flash duration, radiation yield and spectral distribution – are computed. It turns out that the radiation yield is proportional to the square of the proper energy scale of the vacuum which serves also as the vacuum instability threshold and the natural ultraviolet cutoff. While the analysis is mainly based on the theory engaging the logarithmic nonlinear quantum wave equation, some of the obtained results must be valid for any Lorentz-invariance violating theory describing the vacuum by (effectively) continuous medium in the long-wavelength approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.