Abstract

Fumonisin contamination of corn caused by Fusarium verticillioides is a major concern worldwide. While key genes involved in fumonisin biosynthesis are known, the location within the fungal cell where this process occurs has yet to be fully characterized. In this study, three key enzymes, i.e., Fum1, Fum8, and Fum6, associated with early steps of fumonisin biosynthesis pathway, were tagged with GFP, and we examined their cellular localization. Results showed that these three proteins co-localized with the vacuole. To further understand the role of the vacuole in fumonisin B1 (FB1) biosynthesis, we disrupted two predicted vacuole associated proteins, FvRab7 and FvVam7, resulting in a significant reduction of FB1 biosynthesis and a lack of Fum1-GFP fluorescence signal. Furthermore, we used the microtubule-targeting drug carbendazim to show that proper microtubule assembly is critical for proper Fum1 protein localization and FB1 biosynthesis. Additionally, we found that α1 tubulin is a negative regulator in FB1 biosynthesis. We concluded that vacuole proteins with optimized microtubule assembly play a crucial role in proper Fum1 protein localization and fumonisin production in F. verticillioides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call