Abstract

Glycosylation of proteins is one of the most important post-translational modifications. Defects in the glycan biosynthesis result in congenital malformation syndromes, also known as congenital disorders of glycosylation (CDG). Based on the iso-electric focusing patterns of plasma transferrin and apolipoprotein C-III a combined defect in N- and O-glycosylation was identified in patients with autosomal recessive cutis laxa type II (ARCL II). Disease-causing mutations were identified in the ATP6V0A2 gene, encoding the a2 subunit of the vacuolar H +-ATPase (V-ATPase). The V-ATPases are multi-subunit, ATP-dependent proton pumps located in membranes of cells and organels. In this article, we describe the structure, function and regulation of the V-ATPase and the phenotypes currently known to result from V-ATPase mutations. A clinical overview of cutis laxa syndromes is presented with a focus on ARCL II. Finally, the relationship between ATP6V0A2 mutations, the glycosylation defect and the ARCLII phenotype is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.